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Pre-release Forecasting via Functional Shape Analysis 

Of An Online Virtual Stock Market 

 

Abstract 

Pre-release forecasting of demand for new products is crucial for allocating limited marketing 

resources and is one of the most challenging tasks facing decision makers. To address this long-standing 

challenge, many innovative approaches have been proposed in the past. Recently, the emergence of online 

virtual stock markets (VSMs) has presented new opportunities for making dynamic and possibly more 

accurate forecasts. In this study, we present a novel approach for analyzing VSMs, via functional shape 

analysis (FSA). In essence, this novel approach characterizes important features of heterogeneous VSM price 

histories using only a small number of distinguishing shapes (e.g. trending up or down; last-moment velocity 

spurt). These shapes carry information about demand and provide accurate pre-release forecasts.  

We illustrate our approach in the context of pre-release forecasting of release-weekend revenues of 

motion pictures, and assess its performance using movie-by-movie cross validations. The results show that 

while some of the methods traditionally used in movie forecasting can result in errors as high as 90.87%, the 

proposed approach has an error of only 5.28%. It also improves over alternate methods (e.g. volume-

weighted-averages) for characterizing trading histories. These improvements persist, and magnify, when FSA 

is applied to derive early forecasts, long before the product release. We also discuss interpretations of these 

shapes and link them to existing Marketing theories, which may help decision makers identify indicators of 

a potentially successful new product.  

FSA of VSM introduces a novel and powerful pre-release forecasting tool to the Marketing literature. 

It can be readily applied to forecasting demand for a variety of new products. This research also attempts 

to demonstrate the increasing importance of virtual market data as a tool for Marketing research and 

decision making, and functional data analysis as a novel technique useful for investigating a wide array of 

Marketing questions. 
 

 

Key words and phrases: Pre-release Forecasting; Innovation; Marketing Research; Entertainment Marketing; 
Motion Picture; Online Virtual Stock Market; Prediction Market; Trading Dynamics; Nonparametric 
Statistical Methods; Functional Shape Analysis; Functional Data Analysis; Smoothing; Functional Principal 
Component Analysis; Data Mining; E-commerce. 
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1. INTRODUCTION 

Today’s businesses view innovations as the prime engine of growth. However, introductions of 

innovative, and often short-lifecycle, products (e.g. motion pictures, music, video games) are confronted with 

enormous financial stakes, highly uncertain demand, and alarming failure rates. To increase ROI, managers 

need to make important marketing decisions (e.g. release timing, advertising, distribution) long before 

releases, and subsequently adapt decisions given dynamic competitive and demand situations. Therefore, 

there is great interest in deriving early, dynamic, and accurate pre-release demand forecasts to guide decision-

making. Such forecasts are particularly crucial for short-lifecycle products since their initial demand 

comprises a large proportion of the overall demand. 

Marketing researchers have long acknowledged the importance, and the difficulty, of pre-release forecasting 

(Bass et al. 2001). To address this long-standing challenge, past studies have applied linear (Sawhney and 

Eliashberg 1996) and non-linear (Ainslie, Drèze, and Zufryden 2005; Roberts and Urban 1988; Urban, Hauser,  

and Roberts 1990) statistical methods to analyze, for example, historical demand of comparable new products and 

cross-sectional product features (Bayus 1993; Sawhney and Eliashberg 1996; Bass et al. 2001; Lee, Boatwright, 

and Kamakura 2003; Shugan and Mitra 2006), characteristics of innovative concepts or developers (Shugan and 

Mitra 2006; Eliashberg, Hui, and Zhang 2007), demand for the same new product in other distribution channels 

or geographical markets (Neelamegham and Chintagunta 1999; Bronnenberg and Sismeiro 2002), advance 

purchase orders (Moe and Fader 2002), and consumer surveys and clinics (Bass et al. 2001; Eliashberg et al. 

2000; Shugan and Swait 2000). 

In recent years, marketers have become increasingly interested in harnessing the power of online 

virtual games, or more generally, virtual communities (e.g. MySpace, Second Life) in marketing research and 

decision-making (2006 – 2008 MSI Research Priorities). In particular, numerous online virtual stock markets 

(VSMs) have been established to aggregate the wisdom of crowds (Surowiecki 2005) and forecast demand for a 

large variety of new products. These include, but are not limited to, VSMs of motion pictures (HSX; IEM), 

books (Media Predict; Simon & Schuster), software (Inkling); DVDs (Intrade), music albums (HSX), TV 

shows (Inkling), video games and game consoles (SimExchange; Yahoo! Tech Buzz Game), disc drives 

(StorageMarkets), MP3s, PDAs, and cell phones (Inkling). A rapidly increasing number of major corporations 

(e.g. HP, Intel, Microsoft, Google, Yahoo, GE, Corning, Eli Lilly, and Goldman Sachs) are also establishing 

internal or employee-only VSMs to forecast, for example, new product release timing and sales (e.g. Plott and 

Chen 2002).  

These online VSMs present new opportunities for deriving dynamic and possibly more accurate 

forecasts. In this study, we present a novel approach for analyzing VSMs, via functional shape analysis 
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(FSA). In essence, this approach characterizes important features of heterogeneous VSM price histories using 

only a small number of distinguishing shapes (e.g. trending up or down; last-moment velocity spurt). These 

shapes carry information about demand and provide accurate pre-release forecasts.  

We illustrate the approach in the context of forecasting of release-weekend revenues of motion 

picture, and assess its performance using movie-by-movie cross validations. The results show that while some 

of the methods traditionally used in movie forecasting can result in errors as high as 90.87%, the proposed 

approach has an error of only 5.28%. It also improves over alternate methods (e.g. volume-weighted-

averages) for characterize trading histories. These improvements persist, and magnify, when FSA is applied to 

derive early forecasts, long before the product release. We also discuss interpretations of the trading shapes 

and link them to existing Marketing theories which can help decision makers identify indicators of a 

potentially successful new product.  

FSA of VSM introduces a novel and powerful pre-release forecasting tool to the Marketing literature. 

It can be readily applied to forecasting demand for a variety of new products. This research also attempts 

to demonstrate the increasing importance of virtual market data as a tool for Marketing research and 

decision making, and functional data analysis as a novel technique useful for investigating a wide array of 

Marketing questions (e.g. auction, click stream, WOM, and diffusion). 

The rest of the paper unfolds as follows. In Section 2, we introduce key features and prior applications of 

VSMs; and motivate our use of trading price histories in demand forecasting. In Section 3, we describe how FSA 

of VSM can be used in pre-release forecasting. We apply our method to movie forecasting in Section 4 and 

describe empirical findings and links with existing marketing theories. We conclude in Section 5. 

 

2. ONLINE VIRTUAL STOCK MARKETS 

Online VSMs (also known as prediction markets, betting exchanges, or idea futures) are increasingly 

used to aggregate information from online communities and to forecast a wide range of events, e.g. presidential 

elections, sports wins/losses, and more recently, demand for new products. For example, a stock is IPO-ed 

when a new product development is publicized. The trading price at any time (e.g., $70 per share) reflects the 

traders’ current, collective expectation of the initial demand for the product (e.g., $70m revenues). Similar to 

real-life stock markets, new information about the product emerges over time and influences traders’ beliefs: 

those who believe a higher demand (e.g., $80m), compared to the current trading price, tend to buy, with real or 

endowed play money1, and those who believe otherwise sell or short. Traders may buy, sell, or short at any time; 
                                                 
1 Examples of online VSMs that use real money include the IEM, TradeSports, Intrade, Betfair, Foresight Exchange,  
HedgeStreet, etc. And examples of those using play money include HSX, NewsFutures, ProTrade Sports, Inkling, 
Yahoo! Tech Buzz Game, etc. 
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and the winning (if bought low and sold high) and losing amount (if otherwise) is recorded in their personal 

account with the online VSM. Trading often terminates when the new product is released. The liquidation price 

of the stock equals the realized initial demand for the product.  

Online VSMs have several features that make them desirable for forecasting purposes. For example, 

they are dynamic in nature, as opposed to static when using, e.g., only characteristics of a product. The trading prices 

continuously reflect the most updated forecast (Hanson 1999). They also circumvent the need to aggregate 

individuals’ forecasts, since trading prices have aggregated all traders’ forecasts through the embedded trading 

mechanism (Jeppesen and Molin 2003; Füller et al. 2006). Therefore, using VSMs alleviates sampling and 

aggregation biases (Churchill and Iacobucci 2001) present in, e.g., surveys. Furthermore, they provide 

monetary or nominal (e.g., self-pride) incentives to reward participants for active information discovery and 

truthful information revelation, and as a result, produce high-quality forecasts. They also motivate participation 

by providing an enjoyable and entertaining experience (Dahan et al. 2007). Finally, they can be readily 

established2, and have instantaneous access to online participants worldwide. They are economic to implement 

and maintain, as compared to repeated consumer clinics, and have almost zero marginal cost when including 

additional players. 

The most straightforward approach, when analyzing VSMs for forecasting purposes, is to use the 

latest prices prior to new product releases. A number of studies3 report that these latest prices provide reliable 

forecasts, regardless of whether real or play money is used, or any other specific design features of the VSMs 

(e.g., Pennock et al. 2001; Gruca, Berg, and Cipriano 2003; Spann and Skiera 2003). While simple to 

implement, these latest prices are not available when early marketing decisions (e.g. release timing) need to be 

made. Furthermore, it is possible that price histories embed additional information that can improve forecast 

accuracy. Cases in point are past behavioral research in both Marketing and Finance (e.g., Kahneman and 

Tversky 1979; Camerer, Loewenstein, and Rabin 2003; Barberis and Thaler 2003) who have documented 

human behavioral anomalies in a wide array of domains, e.g., stock trading (Johnson, Tellis, and Macinnis 

2005) and product choices (Huang and Chen 2006). Several features of online VSMs and the experiential 

nature of many short-lifecycle new products, invite one to postulate that VSMs are not efficient. That is, the 

latest prices may not fully reflect all the relevant information about new products, and therefore price histories 

may indeed contain valuable information to improve forecast accuracy.  

                                                 
2 A number of free software (e.g. FreeMarket, ideafutures, Zocalo) and commercial software (e.g. Prediction Trader by 
NewsFutures, Foresight Server by Consensus Point, and Virtual Specialist by HSX) are available for implementing and 
maintaining online VSMs.  
3 Several studies (Rhode and Strumpf 2007; Hanson, Oprea, and Porter 2006) also provide evidence that online VSMs cannot 
be systematically manipulated beyond a short time period. 
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For example, the current (or latest) price may not immediately or fully incorporate all the available 

information, due to the delay in information flow from a few industry insiders who are knowledgeable about 

the new product, to a large number of novices or less knowledgeable traders. Information cascade may also 

lead to herd behavior (Hanson and Putler 1996; Dholakia and Soltysinski 2001; Huang and Chen 2006), as 

individuals inevitably learn from others about the potential demand for the (often experiential) new product. 

Even if information immediately diffuses to every individual, individuals may not act (e.g., trade) 

immediately upon the information, or may not interpret the information properly and act accordingly. Since it 

is difficult to evaluate new products (e.g. movies, books, music, TV shows) prior to releases due to their 

experiential nature, individuals may either over- or under- react to pre-release information about the product 

(De Bondt and Thaler 1985). Past research (e.g., Johnson and Tellis 2005; Johnson, Tellis, and Macinnis 

2005) has also documented that traders tend to dump past losers and buy past winners, thus leading to hyped-

up prices of winning stocks. Lastly, the maximum shares a trader may buy/sell often imposed by a VSM, also 

leads to lower liquidity and lack of efficiency in these VSMs (Lamont and Thaler 2003; Ho and Chen 2007). 

As we will demonstrate later, VSM trading prices (at least those of HSX) do not follow a random 

walk (Malkiel 1973). And thus information embedded in the trading price histories may provide improved 

forecasting accuracy of demand for new products. For example, a new product whose trading prices increase 

very sharply towards the time of its release may generate more demand than one whose prices increase at a much 

lower rate. The shape of that trading history (i.e., sharp increase) could be indicative of a last-moment hype 

that may stimulate a much higher demand than what would have been predicted by the latest price alone. In 

the next section, we will show how FSA discovers the most indicative shapes from the data.  

 

3. FUNCTIONAL SHAPE ANALYSIS 

FSA is housed within a more general framework of functional data analysis (FDA). In contrast to classical 

statistics where the focus is on a sample of data points or vectors, FDA focuses on a sample of functional 

observations (e.g., Ramsay and Silverman 2005), e.g., curves, images, or objects. While the methodological 

efforts in this emerging field are rather strong (e.g. James and Sugar 2003 on functional clustering; James 2002 on 

functional generalized linear models), little work has been done using FDA for forecasting. Interestingly, a growing 

number of studies have successfully implemented FDA to address issues of interest to marketers, e.g. online 

auctions (Jank and Shmueli 2006; Reddy and Dass 2006; Wang, Jank, and Shmueli 2007), advertising (Elpers, 

Wedel, and Pieters 2003), open source development (Stewart, Darcy, and Daniel 2006), and penetration curves 

(Sood, James, and Tellis 2007). Our research of using FDA to analyze VSMs contributes to the functional 

forecasting area, and introduces FDA as a solution for another important topic in Marketing: pre-release 
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demand forecasting of new products.   

In the following, we describe the three main steps of our approach. More details can be found in the 

Appendices4. We first smooth the observed trading price histories using penalized smoothing splines (Ruppert, 

Wand, and Carroll. 2003; see Appendix A for computational details and the Online Appendix for robustness to 

different smoothing parameters). Smoothing eliminates noise from the raw data that might result from 

recording-errors, system-errors, or simply random fluctuations over time. Furthermore, a smooth trading path 

allows derivation of trading dynamics, captured by its first derivatives (i.e., trading velocities) and second 

derivative (i.e., trading accelerations). As we will demonstrate in Section 4, trading dynamics are an important 

element of our forecasting model.  

Next, we employ Functional Principal Component Analysis (FPCA) to characterize heterogeneous price 

histories across new product stocks with a small number of shapes. FPCA is a functional generalization of 

ordinary principal component analysis (PCA) (Ramsay and Silverman 2005). While PCA operates on a set of 

discrete data vectors, FPCA operates on continuous functional objects (e.g., trading paths). The goal of FPCA 

(as of PCA) is to project the original data onto a new space of reduced, orthogonal dimensions. As a result, the 

reduced dimensions (i.e., shapes in our context) characterize the most important patterns in the original 

data, while preserving the majority of the data variation.  

We outline the fundamentals of FPCA below and defer more details to Appendix B. To make the 

discussion more concrete, let us assume for the moment that we have measurements of each trading path at 

p  discrete time points. Let 1( ,..., )s s s
nY y y=  denote the [ n  × p ] matrix consisting of n  smooth trading 

paths. Further decompose the [ p × p ] correlation matrix obtained from sY , : ( )sR Corr Y= , into TP PΛ , 

where Λ  is a matrix of eigenvalues and 1 2[ , ,... ]T
pP e e e=  is the corresponding matrix of eigenvectors. In this 

simplified example, each ie  is a [1× p ] vector, but in reality ie  is a continuous function in time, i.e., 

( )i ie e t= . We can think of each eigenvector ie  as shape-defining characteristics. For instance, an 

eigenvector may bring out the differences between the beginning and end trading prices. Alternatively, an 

eigenvector may bring out the change in price (gradual/steep, convex/concave) between adjacent trading 

                                                 
4 Two related methods in the forecasting context are time series analysis and technical analysis. While time series 
analysis is typically concerned with the forecasting of a single univariate (or multivariate) sequence, our goal is to learn 
from shapes common across many sequences of heterogeneous trading price histories. Technical Analysis (TA) is a method 
of evaluating securities by analyzing statistics (e.g. past trading volume) generated by market activities. While both FSA and 
TA are built upon the premise that there is value in the trading history, they have quite different goals. TA intends to “beat the 
market” in the sense of determining the future market value or trend. In contrast, our method uses shapes of the trading path 
to predict an outside-market event (i.e. demand for a new product). Our method also differs from TA in that it provides an 
automated, data-driven approach for forecasting, while TA requires strong user input (e.g., in the form of which technical 
chart to use for analysis). Furthermore, while TA is typically applied to the entire trading history, and thus suffers the 
common criticism of being “too late”, we use FSA for early forecasting based on only partial history, as we will 
demonstrate in Section 4.4. Lastly, FSA can be applied to much broader non-financial contexts (e.g. auction; advertising). 
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periods. Each eigenvector ie  captures iλ × 100% of the variability in sY , where iλ  is the i th eigenvalue or the 

i th diagonal element in Λ . The eigenvector corresponding to the largest eigenvalue is denoted as the first 

principal component (PC). Similarly, the second PC is the eigenvector that corresponds to the second highest 

eigenvalue, and so on. The common practice is to choose only those eigenvectors that correspond to the largest 

eigenvalues (i.e., the most important shapes) that explain the highest percentage of variations in sY . By 

discarding those eigenvectors that explain no or only a very small proportion of the variations, we capture the 

most important characteristics of the observed data patterns without much loss of information.  

Finally, we identify the key shapes using variable selection techniques (including correlation analysis 

and step-wise regression) and forecast demand in a parametric model using only these key shapes.  

One major appeal of our method is that it discovers the most relevant set of shapes in an automated, data-

driven fashion, and thus readily generalizes to a wide variety of different forecasting contexts and applications (e.g. 

auctions; advertising; as discussed earlier). For example, as compared to past studies that characterize VSM price 

histories using summary statistics, e.g. averages, volume weighted averages, or medians (Dahan et al. 2007; 

Dahan, Soukhoroukova, and Spann 2007), FSA does not require heavy, subjective user input, e.g., about which 

statistics to investigate, which may vary from one application to the next. Principal components are also not 

limited to a particular class of shapes (e.g. linear, polynomial) and, as such, result in a very flexible set of shapes. 

Another advantage of our method is that it relies on a minimal number of assumptions. Its main 

assumption is that the underlying functional object is observed on a grid fine enough to reliably re-construct 

the functional object. Our weekly trading prices spanning over a nearly one-year horizon are well-suited for 

forecasting release week revenues of new products.  

A third advantage of this method is that it automatically produces estimates of the trading dynamics, 

e.g., the speed at which the trading price is changing. Dynamics, unlike summary statistics used in past 

studies, are a novel concept in the context of forecasting models. They are important since they capture instant 

changes in information dissemination (e.g., changes in the buzz or hype for a new product) that are typically 

not entirely reflected by contemporaneous prices. We will later show how the inclusion of dynamics improves 

forecast accuracy and leads to new insight about product success.   

 

4. EMPIRICAL STUDY 

4.1 Data Analysis 

We illustrate our approach in the empirical context of pre-release forecasting of movie release-weekend 

revenues. The $34 billion motion picture industry (Digital Entertainment Group 2006) has long identified pre-

release demand forecasting as one of the most crucial, yet challenging, tasks (Sawhney and Eliashberg 1996; 
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Eliashberg et al. 2000). To reap the costly investment of each film5, studios carefully select their marketing 

actions (e.g. release timing, media buying, and distribution planning) during the pre-release period (Figure 1) 

based on their forecast of demand, particularly demand from the release weekend. Release-weekend revenues 

are crucial as they often account for nearly half of a movie’s overall theatrical revenues and provide a strong 

signal, to studios, distributors, and audience, of a films’ revenue potential in subsequent channels, e.g., videos 

and international releases. 

----- Insert Figure 1 Here ----- 

Hollywood Stock Exchange (HSX) is the best-known motion picture VSM. Established in 1996, it has 

attracted nearly 2 million users. Each user is initially endowed with two million Hollywood Dollars (H$2m), 

and can increase personal net worth by strategically selecting and trading movie stocks (buying low and 

selling high). Traders are further motivated by the opportunities to exchange virtual money for merchandise and 

the honor to appear on the Leader Board, to actively search for information about the upcoming movies and 

participate in HSX trading activities. The trading price (e.g., $70) at any time reflects traders’ collective 

expectation of a movie’s first-four-weekend revenues (e.g., $70m). Trading is halted on the day (typically Friday) 

of the movie’s wide release (to at least 650 domestic theaters). The price is adjusted Sunday midnight as the 

release-weekend revenues times 2.86 and then trading is resumed. The stock is de-listed after the movie is 

exhibited in theaters for four weekends. And the liquidation price equals the realized first-four-weekend 

revenues.  

Since most movies are released on Fridays, and trading on Fridays is considered as the most active and 

representative, we obtain from HSX each Friday’s daily-high and daily-low prices for each movie, and use the 

average of the two as a measure of the movie’s trading price for the week. After merging HSX data with 

Nielsen EDI box office data and removing movies with less than 52 weeks of pre-release HSX trading, our final 

sample consists of the last 52 weeks7 of pre-release trading prices of 262 movies released between December 

                                                 
5 Hollywood studios spent on average $65.8 million to produce, and $34.5 million to market, a film (U.S. Theatrical 
Market Statistics 2006); yet on average accrues only $32.7 million in box office revenues (US Entertainment Industry 
Market Statistics 2006).  
6 2.8 is used since a movie’s first-four-weekend revenues are on average 2.8 times its release-weekend revenues. Please 
also see hsx.com for uses of other possible multipliers.  
7 A balanced sample is a pre-requisite for FSA. We acknowledge this as a limitation of the method. We are hopeful, 
though, that as solutions for missing data evolve, our method will also become better applicable to unbalanced samples. 
Moreover, we use 52 weeks in order to allow for early forecasts of almost one year prior to release. Other lengths of pre-
release trading periods are also admissible, depending on the specific contexts at hand. Finally, left-censoring the price 
histories (or using shorter trading histories) makes our result a more conservative representation of the predictive power 
of the VSM. 
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2003 and July 2005. We perform the Dickey-Fuller test8 (Dickey and Fuller 1979) and reject the null 

hypothesis that trading prices follow a random walk (critical values = 2.51 without a drift and 1.55 with a 

drift; both significant at .01 level). This result can be attributable to a number of reasons (see our earlier 

discussion in Section 2). It also suggests that using trading price histories of this not-so-efficient market might 

provide improved forecasting accuracy. 

After smoothing the trading price histories (as the first step of our approach), we obtain smooth 

trading paths. The shapes of these trading paths are considerably heterogeneous across movies (see Figure 2 

for a few sample paths). For example, while prices increase towards the release week (i.e., week 0) for some 

movies like AMITTYVILLE HORROR and MAN ON FIRE, they decrease for others like INTERMISSION and 

THE MUDGE BOY. Trading histories for some, like ALEXANDER, display an overall concave shape, while for 

others, like TORQUE, they display an overall convex shape. Also, the speed at which prices increase or decrease 

differs greatly: particularly early on (WIN A DATE vs. PAYCHECK) or close to release (WIN A DATE vs. 

ELEKTRA). For some movies, prices increase only gradually over time, e.g. AMITTYVILLE HORROR, but very 

sharply for others, e.g. WHITE NOISE. As discussed in Section 2, these different trading shapes plausibly contain 

important information about the potential demand, e.g. a last-moment hype surrounding a new product. Thus our 

goal is to extract the most indicative shapes via FSA, and then use them for forecasting.  

----- Insert Figure 2 Here ----- 

Figure 3 shows the percentage of data variability captured by the first few PCs of the trading paths, 

velocities, and accelerations. We observe that the first PC of the trading path explains nearly 75% of the 

variations; the second and third PCs also carry considerable information; and the higher-order PCs are 

negligible. For the trading velocities and accelerations, the first five PCs capture most of the variability. 

Therefore, we initially retain the first 3 PCs of the paths, the first 5 PCs of the velocities, and the first 5 PCs of 

the accelerations.  

----- Insert Figure 3 Here ----- 

To avoid visual cluttering, we display the first 3 PCs of the paths and velocities in Figure 4. To 

provide better interpretations to these PCs, we introduce the concept of principal component scores (PCSs), 

computed from the corresponding PCs. Recall that PCs rotate the original data onto a space where all data-

dimensions are orthogonal to one another. Therefore, each PC can be used as a weighting factor of the original 

data. That is, if a component value is high (low), then the corresponding data point (i.e., trading price) receives 

                                                 
8 While a large number of prior studies, mainly from Finance, have focused on testing whether the Efficient Market 
Hypothesis (EMH; Fama 1970) holds, or whether the stock prices follow a random walk (Lo and Mackinlay 2002), our 
focus is on how to improve pre-release forecast accuracy via analyzing VSM prices, if they do not follow a random walk. 
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a large (small) weight. Similarly, principal component values with opposite signs (positive / negative) exhibit 

weightings in opposite directions. To be more specific, the j th PCS for movie i , ijS , is the inner product of 

movie i ’s trading path (or trading dynamics) 1( ,..., )s s s
i i ipy y y=  (evaluated on a finite grid, see Appendix B) and 

the jth PC, 1( ,..., )j j jpe e e=  (evaluated on the same grid). For example, the first PCS for the first movie in our 

data is defined as 11 11 11 1 1... .s s
p pS y e y e= + +  Note that while the PCs are common across all movies, the PCSs are 

movie-specific and input into our forecasting model.  

----- Insert Figures 4 and 5 Here ----- 

To better illustrate what these PCs (or shapes) in Figure 4 represent, we discuss three exemplary 

movies in Figure 5. Notice that the first PC of the trading paths (the solid black line in the top panel of Figure 

5), P.PC1, remains almost constant (and negative) over the entire trading period, and thus places almost equal 

(and negative) weights on each data point (i.e., trading price) along the trading path. That is, P.PC1 captures 

the difference in the 52-week-averages across movies: a movie with a relatively high (low) 52-week average has 

a negative (positive) P.PCS1. For example, the 52-week-average is H$32 across all movies, H$27 for 13 

GOING ON 30, H$84 for ALEXANDER, and H$47 for AMITYVILLE HORROR. Correspondingly, Figure 5 

confirms that P.PCS1 (the black circle in the bottom left panel) is positive for 13 GOING ON 30, but negative 

for AMITYVILLE HORROR, and most negative for ALEXANDER.  

P.PC2 is negative in the first half (i.e., puts negative weights on early prices) and positive in the 

second half (i.e., puts positive weights on late prices) of the trading period. It therefore captures the difference 

between early and late prices: a movie with an upward (downward) trend results in a positive (negative) 

P.PCS2. Similarly, P.PC3 captures the difference between the mid-term and early-late-average (ELA) prices: a 

movie with a higher (lower) mid-term than ELA has a positive (negative) P.PCS3. An example of a higher 

mid-term than ELA trading is a concave shape. Figure 5 confirms the difference in shapes for the three movies. 

. Using similar rationale, V.PC1 emphasizes last-moment velocity spurts. It is essentially zero until the 

end where it turns negative: thus a movie with a positive (negative) last-moment velocity spurt has a negative 

(positive) V.PC2. Similarly, V.PC2 points to early velocity spurts: a movie with positive (negative) early 

velocity spurts has a negative (positive) V.PC2. As we will show in the next section, these five PCs capture the 

most significant variations in the trading price histories. We also provide discussion on how these shapes are 

related to potential demand for new products in Section 4.3.   

As the final step in our model, we employ variable selection techniques to retain, from the initial 13 

candidate shapes, a smaller number of key shapes for prediction. Both correlation analysis and step-wise 

regression choose to retain the same 5 shapes: P.PC1 (average), P.PC2 (early.late), P.PC3 (mid.ELA), V.PC1 

(last-moment velocity spurt) and V.PC2 (early velocity spurt). We then use linear regression to link release-
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weekend revenues to these 5 key shapes, or more precisely, their corresponding movie-specific PCSs9. We 

evaluate the predictive performance using movie-by-movie, full cross-validations. That is, we hold out one 

movie at a time, estimate the model on the remaining 261 movies, and then use the estimated parameters to 

forecast the held-out movie’s release-weekend revenues10. Table 1 presents the Mean Absolutely Percentage 

Error (MAPEs) of the proposed Model C1 and a set of alternate models. We will describe in Section 4.4 the 

application of our method to early, partial price histories in deriving early and dynamic forecasts. 

 

4.2 Model Comparison 

Model A1 in Table 1 is based on the cross-sectional product features (i.e., movie characteristics) available 

prior to release and traditionally used in pre-release forecasting (Sawhney and Eliashberg 1996). They include 

genres (e.g., drama), sequel (yes/no), production budgets, MPAA ratings (e.g., PG-13), run time (or length of the 

movie in minutes), and studios (e.g., Universal)11. Model A2 includes both product features and pre-release ad 

spending12 (17 media, e.g. newspaper and TV, combined) during the last 10 pre-release weeks.  

The second set of models use only the latest prices (B1), latest prices augmented with product features 

(B2), and latest prices augmented with both product features and pre-release ads (B3). To unveil the contribution 

of the trading dynamics, the proposed 5-shape model (C1) is compared with a model (C2) using only the 3 path 

shapes (i.e., ignoring the dynamic information of the trading velocities V.PC1 and V.PC2). Model C1 is further 

compared with a model using all 13 shapes (C3). To examine whether the proposed model can be further 

                                                 
9 Other models, e.g. log-log (Elberse and Eliashberg 2003), exponential (Krider and Weinberg 1998), or Poisson 
(Neelamegham and Chintagunta 1999) models were used to forecast weekly revenue decays. When forecasting release-
weekend revenues, we also explored a log-linear model whose fit and prediction are worse than the linear model.  
10 We also perform the same analysis forecasting the first-four-weekend revenues and report all relevant results in our 
Online Appendix. 
11 Other movie characteristics (e.g. star salary) are not included as they are often correlated with e.g. production budget. 
We also estimate a number of additional models augmenting movie characteristics by distribution (number of screens), 
professional evaluations (critics ratings; Oscars), and audience evaluations (i.e. user ratings as reasonable proxies for pre-
test audience response). The results (displayed in the Online Appendix) show that the forecast accuracy of these models 
improves over Models A1 and A2, nonetheless not sufficient to outperform the proposed Model C1 using only the 5 key 
shapes. In addition, given that U.S. movies are generally released to domestic theaters before any other channels (e.g. 
videos) or geographical markets (e.g. European countries), and that movie tickets are generally not purchased in advance, we 
will not compare our model with a model based on demand of the same product in other distribution channels or geographical 
markets (Neelamegham and Chintagunta 1999; Bronnenberg and Sismeiro 2002), or a model based on advance purchase 
orders (Moe and Fader 2002). Moreover, while we do not have access to consumer surveys and clinics data (Eliashberg et al. 
2000), we believe the proposed approach can be advantageous and more economic when repeated and dynamic pre-release 
forecasts are needed for decision making.  
12 Advertising for a movie often starts three to four months prior to its theatrical release, peaks at release, and rapidly 
diminishes after release. Across the 262 movies in our sample, 72.14% of the theatrical ad dollars were spent prior to 
releases. And the ads during the last 10 pre-release weeks, which are used in our model, account for 98.69% of the total pre-
release ads. The Hausman specification test (Hausman 1978) rejects the hypothesis of endogeneity in the weekly pre-
release advertising in our data. 
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improved, we augment the 5-shape model with product features (C4), pre-release ads (C5), both product features 

and pre-release ads (C6), and the latest prices (C7).  

To examine whether trading price histories can be captured equally well with summary statistics used in 

prior studies (Dahan et al. 2007), or simple measures of trends (as opposed to the output from FSA), we estimate a 

series of models using averages (D1), volume weighted averages (D2), medians (D3), averages and linear trend 

(D4), and averages, linear trend, and nonlinear trend13 (D5). Yet another way to investigate the power of FSA is to 

try and replicate the 5 key shapes from model C1 using simpler tools. To that end, we compute the 52-week 

averages (avg.), the latest-minus-earliest prices (end.early), the week –25 price minus the latest-earliest-averages 

(mid.ELA), the late spurt (as the slope of the linear trend over the demeaned prices from week –9 to week 0) and the 

early spurt (as the slope of the linear trend over the demeaned prices from week –51 to week –42). This results in 

model E1.  

To provide further credibility to the variable selection approach and the linearity assumption of our model, 

we estimate a CART (Classification And Regression Tree) and a GAM14 (Generalized Additive Model) on all 13 

shapes, respectively (E2 and E3), and on the 5 shapes used in the proposed model (E4 and E5), respectively. 

Table 1 displays the results15.  

----- Insert Table 1 Here ----- 

The results show that Models A1 and A2 yield the highest forecast errors. Also, augmenting the latest 

price with movie characteristics and ads does not reduce errors, which suggests that information contained in 

movie characteristics and ads have been fully incorporated in the Latest Price16. The proposed Model C1 

produces the lowest forecast errors (MAPE = 5.28) and reduces the error over the Model B1 using the latest 

prices alone (MAPE = 10.35) by nearly 50%. As we will show in Section 4.4, when early forecasts are 

                                                 
13 The linear trend is the slope obtained by fitting a zero-intercept linear model on the 52 weekly demeaned trading 
prices. Similarly, the nonlinear trend is obtained by fitting a quadratic model after removing the means and linear trends 
from the 52 weekly trading prices. 
14 CART models are often used in place of variable selection methods since they have built-in mechanisms to choose the 
most important predictors. Specifically, CART recursively partitions the data and builds separate models within each 
data-partition in a tree-like fashion. GAMs do not assume a strict functional relationship between the response and the 
predictors and therefore replace the restrictive linearity assumptions (as in the proposed Model C1) with a more flexible 
non-parametric form.  
15 We also allow for movie-specific coefficients and then use Bayesian methods to estimate all the models from Table 1 
that do not take advantage of cross-sectional information (i.e., through extracted key shapes). Overall, the results 
(displayed in the Online Appendix) show that shrinkage-based methods improve upon their frequentist counterparts; 
nonetheless, they do not outperform the proposed Model C1. It is also important to note that, from a practical point of 
view, Bayesian estimation takes a significantly longer amount of time to complete. Thus, if interest lies in real-time 
forecasts for dynamic, on-demand decisions, then our least-squares approach has a sizable edge.  
16 To validate this, we also estimate Models B1 ~ B3 using all 262 movies. The coefficients for movie characteristics and 
ads are all insignificant. F-tests (F=1.45 and p-value = 0.07 for Model B2; F=1.19 and p-value = 0.22 for Model B3) 
cannot reject the null hypotheses that the coefficients for movie characteristics (for Model B2) and for movie 
characteristics and ads (for Model B3) are jointly zero. 
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required, the advantage of the proposed model over one using the latest prices is further magnified. In 

light of the costly investment and low ROI of each movie, such improvement in forecast accuracy is sizeable 

and managerially important for Hollywood studios in pre-release marketing planning (e.g. media purchasing, 

theater booking, or contracting of movie-related merchandise like toys).  

When removing the trading dynamics (i.e., V.PC1 and V.PC2) from the proposed Model C1, the 

forecast accuracy is reduced considerably (Model C2). This suggests that the trading dynamics are an 

important factor. We will take a closer look at this in the next section. We also notice that the proposed 5-

shape model outperforms the full 13-shape model, which points to the successful performance of our 

variable selection technique. When augmenting the 5 shapes with movie characteristics, pre-release ads, 

or the latest prices, the forecast errors increase, which is likely a result of model over-fitting (i.e., movie 

characteristics, pre-release ads, or the latest prices do not capture any additional patterns in the data and, 

as a consequence, fit noise). 

Models D1 ~ D5 yield higher forecast errors than the proposed 5-shape model. This shows that 

summary statistics (particularly without capturing any dynamics in the data) have limitations. Moreover, 

as discussed earlier in Section 3, FSA automates the discovery of the most important patterns in the data, 

and therefore not only eases the danger of leaving out important statistics, but also facilitates the ready 

applications to alternate contexts. The results also show that while the measures used in Model E1 do not 

perfectly replicate our 5-shape model, its forecast performance provides evidence that there is value in the 

5 key shapes, even if constructed in a much simpler form. Finally, the proposed model outperforms all 

CART models. One common criticism of CART is that it frequently over-fits data. The result also suggests that 

our variable selection procedure is quite effective in identifying important predictors and rendering a 

parsimonious, yet powerful, forecasting model. While Model C1 also outperforms the 13-shape GAM model 

(E3), its performance is identical to the 5-shape GAM model (E5). We view this as evidence that the 

relationships among the data are well-captured by our linear model.  

To summarize, the proposed model using five key trading shapes identified via FSA provides better 

pre-release forecasting than several alternate models that rely on conventional pre-release information, e.g., cross-

sectional product characteristics or pre-release ads. This model also accounts for information embedded in the 

trading histories and thus outperforms a model that relies solely on the latest prices. As we will show later in 

Section 4.4, the advantage of the proposed model over alternate models persists, and magnifies, when early 

and dynamic forecasts are derived using early, partial trading price histories. 

 

4.3 Parameter Estimates 
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Interpreting the coefficients in our forecasting model (Table 2) requires extra care since each PCS is a 

linear combination of the information across the entire trading history. Recall from Section 4.1 that the larger 

P.PCS1, P.PCS2, P.PCS3, V.PCS1, and V.PCS2, is, respectively, the lower the 52-week average, the steeper 

the upward trend, the more concave the shape, and the smaller the last-moment velocity spurt, or the early 

velocity spurt, is, respectively. Therefore, the significant coefficients of these predictors (Table 2) show that 

higher 52-averages, steeper upward trends, and more rapid (and positive) last-moment and early price speeds 

all are associated with higher release-weekend revenues. These indicators can be collectively used as 

managers’ decision rules of thumb.  

----- Insert Table 2 Here ----- 

 To provide better understanding of how these key shapes are linked to demand for new products in 

general (and not just movies), we provide some plausible theoretical interpretations below. The first shape 

(P.PC1) reflects an overall appeal of a new product, relative to a myriad of many other available new 

products. The average trading price of each new product stock accounts for information about, for example, 

(i) individual traders’ preferences toward the new product (in terms of product characteristics, product-

consumer-fit, etc.), and their collective beliefs of other potential adopters’ preferences; (ii) the firm’s 

marketing activities, e.g. distribution and advertising; and (iii) potential competition. Consider KINGDOM 

OF HEAVEN and EULOGY (Figure 2) as an example. The former is traded at $H87.56 on average, whereas 

the latter is traded at H$10.60. The large difference could result from the fans’ overwhelming affection 

towards Orlando Bloom who stars in KINGDOM OF HEAVEN. It may also be attributable to much stronger 

pre-release ad support ($31 million for KINGDOM OF HEAVEN vs. $0.2 million for EULOGY) that could 

inform and persuade the public to view the movie. The same set of information (e.g. product features, adopter 

preference, marketing effort, and competitive intensity) that influences the overall trading price (or demand 

expectation) of a new product also influences the actual demand of the product at the time of its release 

(Henard and Szymanski 2001). Also interestingly, notice that while P.PC1 appears almost constant over time, 

its magnitude in fact slightly increases. This suggests that P.PC1 weighs recent information about the product 

slightly higher than earlier information, consistent with the “recency effect” widely studied in the Behavioral 

Marketing literature (e.g. Haugtvedt and Wegener 1994). 

The second important shape (P.PC2) pertains to the inter-temporal sentiment toward this new 

product. A positive (or upward), as opposed to a negative (or downward), sentiment contributes to new 

product success, as plausibly explained by the well-known Prospect Theory (Kahneman and Tversky 1979). 

According to this theory, a higher demand expectation early on and a lower one later, possibly as a result of 

more negative information about the new product over time (e.g. insufficient supply; product flaws), leads to 
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“over-expectation” among traders and potential adopters in general. Therefore, “loss aversion” will possibly 

dissuade more adopters from purchasing the product at the time of its release. This is also consistent with our 

observation (Figure 4) that early on a relatively high trading price (or demand expectation) is weighted more 

negatively, by P.PC2, than a relatively low price (or demand expectation). This is consistent with why many 

firms are greatly interested in strategically managing pre-release expectations for their new products (Kopalle 

and Lehmann 2004).  

V.PC1 is related to the last-moment hype about the new product. “Marketing hype” is “a set of pre-

launch activities that lead to the creation of an environment conducive to the acceptance of new products” 

(Wind and Mahajan 1987), including distribution, media, and opinion leaders. While marketing scholars have 

long advocated for incorporation of marketing hype in new product forecasting models (Mahajan and Wind 

1988), few have examined this issue. Our study shows that the speed of change in the trading price (or 

demand expectations) in the last few weeks towards a new product’s release is a strong indicator of the 

product’s early demand. A rapid change in the last-moment demand expectation is possibly indicative that (i) 

the last-moment information about the new product (e.g., available through advertising or critics’ reviews) 

rapidly disseminates across potential adopters; and (ii) the strength of preferences over, and beliefs of success 

about, the new product, is high. Ultimately, these factors translate to faster adoption at the time of release. The 

influence of such last-moment hype may also rationalize why firms from many industries of short-lifecycle 

products often dramatically ramp up their ad spending towards the release time (Elberse and Anand 2007). 

The last important shape, V.PC2, reflects the influence of early pre-announcement hype toward the 

new product (or more precisely, new product concept). A stream of marketing research has demonstrated that 

new product pre-announcements may cannibalize demand for existing products (Moorthy and Png 1992), 

create pent-up demand and network externalities (Dranove and Gandal 2003), generate word-of-mouth 

(Eliashberg and Robertson 1988), promote brand preference and perceptions of the new products (Lilly and 

Walters 2000; Nagard-Assayag and Manceau 2001), and deter releases of rival products (Bayus, Jain, and 

Rao 2001; Foutz and Kadiyali 2005). A rapid change in the demand expectations early on may indicate that 

(i) information about the new product concept, or initial development, rapidly diffuses across potential 

adopters; and (ii) the preference, or confidence, over this new product concept, or initial development, is 

strong. Thus, we anticipate that V.PC2 could be correlated with, for example, (a) whether a movie is a sequel 

(or more generally, an extension, or new generation, of a previously successful new product), and (b) 

production budgets (which may lead to higher probability of NPD success). Indeed, the average V.PCS2 for 

sequel movies is –2.89 (recall that a strong early velocity spurt is associated with a more negative V.PCS2) 
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and .37 for non-sequels. We also detect a fairly strong correlation of –.43 between V.PCS2 and production 

budgets.  

Besides our study, several other studies report similar shapes across a wide variety of domains. For 

instance, Subramaniam, Varadhan and Crainiceanu (2006) discovered shapes similar to P.PC1 ~ P.PC3 in the 

evolution of traffic across large corporate networks. Sood, James and Tellis (2007) identified a similar set of 

shapes in the market penetration curves of 21 categories of new products across 70 countries. Therefore, it is 

possible that these shapes can be generalized to other non-movie (or more broadly, non- new product) contexts. 

Still, we encourage future research to validate these empirical findings and theoretical explanations in demand 

forecasting of other new products (e.g. music, books, software, and MP3s). We believe such effort is also made 

possible and catalyzed by the rapid emergence of many new product VSMs, and the increasing prominence of 

virtual market data as an important marketing research tool.  

 

4.4 Early and Dynamic Pre-release Forecasting 

The results so far suggest that our model using the 5 key shapes is capable of yielding accurate 

predictions. While this result is curious, it is not of most practical use since the proposed model (and others in 

Table 1) utilizes information until the Friday prior to the product release (i.e., week 0). In reality, early (i.e., 

prior to week 0) and dynamic (i.e., incorporating newly arriving information on the fly) pre-release forecasts 

are most valuable to managers since many marketing decisions for new products (Figure 1 as an example) need 

to be made long before the actual release and need to be adaptive to changing competitive environments and 

demand situations. One main advantage of our model is that it can be applied, readily and repeatedly, to early, 

partial price histories. These early, partial price histories contain information available from early on (e.g. t = 

week –51) until a desired decision time t (see Figure 6), which often occurs many weeks prior to the release 

(e.g. t = week –40, or t = week –30). 

We analyze the partial price histories, producing early and dynamic forecasts at different decision 

times, ranging from very early (t = –40) to very late (t = 0) using all models displayed in Table 1. To 

avoid visual cluttering, we only show, in Figure 7, the resulting prediction accuracy (together with 95% 

confidence bands) for the proposed model (C1) and those using product features and pre-release ads 

(Models A1, A2, C6; left panel of Figure 7) and those using the latest price at any time t (Models B1 and 

B3; right panel of Figure 7). 

----- Insert Figures 6 and 7 Here ----- 

Overall, we see that, not surprisingly, managers can derive increasingly accurate forecasts (i.e., 

with reducing MAPEs) as more information becomes available over time (i.e., closer to week 0). The 
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forecast accuracy of the proposed model (C1) increases only gradually early on (e.g. week –40 to –15), but 

rather rapidly thereafter. This indicates that the amount of information about new products increases at a 

non-constant speed, especially when pre-release ads for the new products commence (also see Figure 1).  

The left panel shows that Model A2, using both product characteristics and pre-release ads, 

produces better forecast after ads commence, compared to the (static) Model A1 with only product 

characteristics. Model C6, using product characteristics, pre-release ads, and 5 key shapes, significantly 

improves Models A1 and A2 across all time periods. For a short period, it also provides slightly better 

forecast than Model C1, but the improvement is only marginally significant. This suggests that much 

information about the products is already reflected in the trading shapes, and thus adding such information 

likely leads to model overfitting.  

The right panel of Figure 7 shows that the proposed model (C1) significantly outperforms Model 

B1 using only the latest prices. The discrepancy is particularly large early on (see also Table 3 for a 

numerical comparison). It is also interesting to see that Model B3, which augments the latest prices with 

product characteristics and pre-release ads, initially improves Model B1 using the latest prices alone. This 

is in contrast to the left panel where Model C6 does not improve over C1. This provides more evidence 

that while trading shapes account for most product-related information already early on, the latest prices 

do not. Only as time progresses, does relevant information eventually get absorbed into the latest prices. 

----- Insert Table 3 Here ----- 

Overall, the results show that the proposed model can provide early and dynamic forecasts 

accurately. Similar forecasts cannot be accomplished, at least not as easily, using conventional methods, e.g., 

product characteristics (which are generally time invariant and therefore do not capture change in the 

perception of the product), sales in other channels or markets (which are generally not available early on), or 

consumer surveys/clinics (which are expensive to administer repeatedly).  

 

5. CONCLUSION 

Pre-release forecasting of demand for new products is one of the most crucial, yet challenging, tasks 

facing marketers. The recent, rapid emergence of new product-oriented VSMs provides creative solutions to 

this long-standing challenge. In this study, we demonstrate that functional shape analysis of VSM price 

histories is capable of improving over traditionally used methods, e.g. product characteristics, and alternate methods 

that may be used to analyze VSMs, e.g. the volume-weighted-averages. These improvements persist, and 

magnify, when FSA is applied to early, partial trading histories to derive early and dynamic forecasts. 

In an application of pre-release forecasting of release-weekend revenues of motion pictures, our 
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method identifies four shapes that may assist decision makers to identify a potentially successful new product. 

For example, we find that a high average trading price, a strong upward trend, and a rapid price increase 

towards the time of release and early on, are all strong indicators of potential success. We further provide 

plausible interpretations of these shapes as characterizing the overall appeal of the new product, inter-temporal 

sentiment towards the product, last-moment hype, and early pre-announcement hype, each contributing to the initial 

demand for the short-lifecycle new product.  

This research introduces a novel and powerful pre-release forecasting method to the Marketing 

literature. One advantage of FSA is that it is data-driven and automatically discovers the most relevant shapes 

that characterize the longitudinal data at hand. As a result, it can be readily applied, as a decision support 

system, to forecasting demand for a large variety of new products (e.g. books, games, and MP3s). These 

applications are further catalyzed by the increasing availability of data from virtual markets and virtual games 

(e.g., Second Life) as important tools for Marketing research and corporate decision-making.     

We acknowledge that this study is only the first step in demonstrating the potential usefulness of VSMs 

to marketers and unveiling functional data analysis to address a wide range of issues of interest to marketers. It 

would be informative to see whether similar shapes can be identified when forecasting demand for a variety of 

new product prior to release, and thus shed light on possible theoretical generalizations that identify, and more 

importantly, help create success factors prior to release. Even more broadly, shapes embedded in rich marketing 

longitudinal data, e.g. pricing, advertising, click stream to social networking websites, and online WOM, may 

convey important information about preferences or competitive actions. The recent increase in the number of 

studies that successfully use functional data analysis to address interesting marketing questions, e.g. auctions 

(Jank, Shmueli, and Wang 2006; Reddy and Dass 2006), advertising (Elpers, Wedel, and Pieters 2003), and 

diffusion (Sood, James, and Tellis 2007), testifies to the potential of this approach. Finally, we want to 

point out that an increasing number of marketing scholars are discovering the potential of online VSMs and other 

virtual markets in measuring preferences (e.g., Dahan et al. 2007), generating new product ideas (Soukhoroukova,, 

Spann, and Skiera. 2007), and assessing the effectiveness of marketing mix (e.g. Elberse and Anand 2007). 

These also represent fruitful directions for future research. 
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Table 1: Model Comparison: Forecasting Release-weekend Revenues 
 

Model Model Description MAPE (%) 
A1 Movie Charact. 90.87 
A2 Movie Charact. + Ad 69.37 
B1 Latest Price 10.35 
B2 Latest Price + Movie Charact. 11.64 
B3 Latest Price + Movie Charact. + Ad 12.54 
C1 5 Shapes    5.28 
C2 3 Path Shapes (i.e., No Dynamics Shapes) 19.26 
C3 All 13 Shapes   8.87 
C4 5 Shapes + Movie Charact. 11.07 
C5 5 Shapes + Ad   6.23 
C6 5 Shapes + Movie Charact. + Ad 12.79 
C7 5 Shape + Latest Price   8.65 
D1 Avg. 18.60 
D2 Volume Weighted Avg.   7.39 
D3 Median 25.25 
D4 Avg.+ Linear 10.72 
D5 Avg. + Linear + Nonlinear 18.56 
E1 Avg. + End.Early + Mid.ELA + Late Spurt + Early Spurt 11.06 
E2 CART on All 13 Shapes 21.42 
E3 GAM on All 13 Shapes   8.87 
E4 CART on 5 Shapes 21.19 
E5 GAM on 5 Shapes   5.28 

 
 
 
 
 

Table 2: Forecasting Release-weekend Revenues Using 5 Shapes 
 

 Estimate Std. Err. P-Value 
Intercept 14605721.69 416562.60 0.00 
P.PC1: Average –52905.94 1994.66 0.00 
P.PC2: Early vs. Late  79175.23 12121.40 0.00 
P.PC3: Mid vs. ELA –27755.01 20363.75 0.17 
V.PC1: Last-moment Velocity Spurts –1227986.42 97196.90 0.00 
V.PC2: Early Velocity Spurts –412539.62 163888.87 0.01 
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Table 3: Improvement of Model C1 over Alternate Models in Figure 7: 
MAPE(%) of Alternate Models minus MAPE (%) of Model C1  

 
Model Model Description Week -40 Week -30 Week -20 Week -10 Week 0 
A1. Movie Charact. 55.61 57.82 61.98 76.25 85.59 
A2. Movie Charact. + Ad 55.61 57.82 61.98 76.25 63.79 
C6. 5 Shapes + Movie Charact. + Ad 10.77   1.14 –2.78   4.72   6.97 
B1. Latest Price 14.36 10.98   7.7.1   7.95   5.07 
B3. Latest Price + Movie Charact. + Ad 12.29   4.03   3.61   8.00   8.04 
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Figure 1: Hollywood Decisions in the Weeks Leading to Release Weekend 

 
 
 
 
 
 

Figure 2: Examples of HSX Trading Price Histories 
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Figure 3: Percentages of Variances of Trading Paths, Velocities, and Accelerations,  
Respectively, Explained by Their First 9 PCs 

 
 

 
Figure 4: The First 3 PCs of Trading Paths (top panel) 
and First 3 PCs of Trading Velocities (bottom panel) 
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Figure 5: Three Example Movies’ Trading Paths (top panel) and  
First (black circles), Second (red triangles), and Third (green crosses) PCS (bottom panel) 

 

 
 
 

Figure 6: Early and Dynamic Decision Making Using Early Partial Price Histories 
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Figure 7: Early and Dynamic Pre-release Forecasting Using Early Partial Price Histories 
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Appendix 
 

Appendix A. Deriving Smooth Trading Paths 
 

Functional data analysis operates on a set of continuous functional objects, e.g., a set of continuous 
curves describing the daily temperature changes (Ramsay and Silverman 2005), the prices in an online 
auction (Jank and Shmueli 2006), or the trading prices of an online VSM. Despite their continuous nature, 
limitations in human perception and measurement capability allow us to record only discrete, e.g., weekly, 
observations of these curves. Thus, the first step is to recover, from the observed data, the underlying 
continuous functional objects using smoothing techniques. There are a variety of different data smoothers. We 
use a very flexible and computationally efficient technique called the penalized smoothing spline (Ruppert, 
Wand, and Carroll 2003).  

Let 1,..., Lτ τ  be a set of knots. Then, a polynomial spline of order p  is given by  
2

0 1 2
1

( ) ... ( ) ,
L

p p
p pl l

l
f t t t t tβ β β β β τ +

=

= + + + + + −∑  

where [ 0]uu uI+ ≥=  denotes the positive part of the function u . Define the roughness penalty  
2( ) { ( )} ,m

mPEN t D f t dt= ∫  

where ,  1,2,3,...,mD f m = denotes the thm derivative of the function f . The penalized smoothing spline f  
minimizes the penalized squared error 

2
, { ( ) ( )} ( ),m mPENSS y t f t dt PEN tλ λ= − +∫  

where ( )y t  denotes the observed data at time t , and the smoothing parameter λ  controls the trade-off 
between data-fit and smoothness of the function f . Using 2m =  leads to the commonly encountered cubic 
smoothing spline. Other possible smoothers include the use of B-splines or radial basis functions (Ruppert, 
Wand, and Carroll 2003). 

Estimation of the smoothing splines is done is a way very similar to ordinary least squares. Define the 
1L p+ +  vector of spline basis functions  

2
1( ) (1, , ,..., ,[( ) ] ,...,[( ) ] )p p p

Lx t t t t t tτ τ+ += − − .            
Then we can write ( ) ( )f t x t β= , where 0 1 1( , ,..., , ,..., ) 'p p pLβ β β β β β=  is the 1L p+ +  parameter vector.  
The roughness penalty can now be written as  

' ,mP Dβ β=         
where the symmetric positive semi-definite penalty matrix D  is defined as { ( )}'{ ( )} .m mD D x t D x t dt= ∫  

We can rewrite the penalized residual sum of squares as 

   ' 2
,

1
{ ( ) } .

n

m i i
i

Q D y x tλ λβ β β
=

= + −∑      

Let '
1( ,..., )ny y y=  denote the vector of the observed HSX trading values and define the matrix of spline basis 

functions 
1

2

( )
( )

...
( )n

x t
x t
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x t

⎛ ⎞
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⎜ ⎟
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We can now write 
   ' '

, ( ) ( ).mQ D y X y Xλ λβ β β β= + − −                    
Setting the gradient equal to zero and rearranging terms yields the estimating equations 
   ' '( ) .X X D X yλ β+ =                    
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Solving for β  gives the penalized spline estimator 

   ' 1 '( ) .ps X X D X yβ λ
∧

−= +                    

We note that the Hessian matrix equals '2( ).X X Dλ+  Since the matrix 'X X  is positive definite and Dλ  is 

positive semi-definite, the Hessian matrix is positive definite and, hence, psβ
∧

 indeed minimizes the penalized 
residual sum of squares. 

In this study, we use smoothing splines of order 4p = , a smoothing parameter of 50λ = , and we 
place a knot at every week of the trading period. Since we consider 52 trading weeks for each movie, this 
results in a total of 52 knots per trading path. While the choice of the smoothing parameters can appear 
arbitrary, our specific selection is guided by the goal of obtaining smooth functional objects that (visually) 
represent the original data well. Moreover, we also conducted a robustness study and found that the results do 
not vary much for different choices of the smoothing parameters (see Online Appendix A at the Marketing 
Science website).  
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Appendix B. Functional Principal Component Analysis (FPCA) 
 

FPCA is a functional generalization of PCA. Ordinary PCA operates on a set of data vectors, say, 
1,..., nx x , where each observation is a p-dimensional data vector 1( ,..., )T

i i ipx x x= . The goal of ordinary PCA is to 
find a projection of 1,..., nx x  into a new space which maximizes the variance along each component of the new space 
and at the same time renders the individual components of the new space orthogonal to one another. In other words, 
the goal of ordinary PCA is to find a PC vector 1 11 1( ,..., )T

pe e e=  for which the PCS  

1 1 1
T

i j ij i
j

S e x e x= =∑                                

maximize 2
1ii

S∑  subject to 
22

1 1 1.j
j

e e= =∑                                     

This yields the first PC 1e . In the next step, we compute the second PC 2 21 2( ,..., )T
pe e e=  for which, similar to 

the above, the principal component scores 
2 2

T
i iS e x=  maximize 2

2ii
S∑  subject to 2

2 1e =  and the additional 

constraint  

          
2 1 2 1 0.T

j j
j

e e e e= =∑                      

This second constraint assures that that the resulting principal components are orthogonal. This process is 
repeated for the remaining PC 3,..., .pe e  .  
 
The functional version of PCA is similar in nature, except for that we now operate on a set of continuous 
curves rather than discrete vectors. As a consequence, summation is replaced by integration. More specifically, 
assume that we now have a set of curves 1( ),..., ( )nx s x s , each measured on a continuous scale indexed by s . 
The goal is now to find a corresponding set of PC curves ( )ie s  that, as previously, maximize the variance 
along each component and are orthogonal to one another. In other words, we first find the PC function 1( )e s  
whose PCS  

1 1( ) ( )i iS e s x s ds= ∫                    

maximize 2
1ii

S∑  subject to 
22

1 1 1.e ds e= =∫                                 

Similar to the discrete case, the next step involves finding 2e  for which the PCS 2 2 ( ) ( )i iS e s x s ds= ∫  maximize 
2
2ii

S∑  subject to 2
2 1e =  and the additional constraint 

   
2 1( ) ( ) 0.e s e s ds =∫                        

In practice, the above integrals are overcome either by operating on a fine grid or, alternatively, by 
finding a lower dimensional expression for the PC functions ( )ie s  with the help of basis expansions. For 
instance, let 1( ) ( ),..., ( )Ks s sφ φ φ=  be a suitable basis expansion (Ramsay 1998), then we can write  

1
( ) ( ) ( ) ,

K
T

i ik k i
k

e s b s s bφ φ
=

= =∑                  

for a set of basis coefficients 1 ,..., .i iKb b b=  In that fashion, the integral in e.g. (18) becomes 

2 1 1 2( ) ( ) ,Te s e s ds b Wb=∫                    

where ( ) ( ) .TW s s dsφ φ= ∫  For more details, see Ramsay and Silverman (2005). 


